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Convergence of a Generalized Pulse-Spectrum Technique 
(GPST) for Inverse Problems of 1-D Diffusion Equations 

in Space-Time Domain 

By X. Y. Liu and Y. M. Chen 

Abstract. The problem of convergence of a special form of the generalized pulse- 
spectrum technique (GPST) for solving inverse problems of one-dimensional diffusion 
equations in space-time domain is considered. Under the assumptions that a Tikhonov 
regularized solution exists and the derivative operator of the regularized forward prob- 
lem at the regularized solution is invertible, the iterative solutions of this special GPST 
converge to the Tikhonov regularized solution in C norm if the initial guess is close 
enough to the Tikhonov regularized solution and the rate of convergence is at least 
linear. 

1. Introduction. The generalized pulse-spectrum technique (GPST) [1] is a 
versatile and efficient iterative numerical algorithm for solving inverse problems of 
a system of nonlinear partial differential equations. In general, inverse problems 
of partial differential equations can be formulated as ill-posed nonlinear operator 
equations. It is important to point out that the GPST is not a single narrowly 
defined iterative numerical algorithm, but a broad class of iterative numerical al- 
gorithms based on the concept that either the nonlinear operator equation is first 
linearized by any one of the Newton-like iteration methods and then each iterate is 
solved by using a stabilizing method to overcome the instability, e.g., the Tikhonov 
regularization method [14]. Alternatively, the stabilizing method can be first ap- 
plied to the nonlinear operator and then the stabilized nonlinear problem is solved 
by using a Newton-like iteration. Hence different choices of various Newton-like 
iteration methods and stabilizing methods lead to different special forms of GPST. 
The choice of a specific Newton-like iteration method and stabilizing method and 
the question of whether to solve the inverse problem in the space-time domain or in 
the space-complex frequency domain depend mainly on the particular inverse prob- 
lem under consideration. The efficiency of a GPST depends upon how efficiently 
one can treat every single step in the particular numerical algorithm. 

It has been demonstrated that the GPST iterative numerical algorithm does give 
very good results in solving the inverse problems with time-dependent coefficients 
of one-, two- and three-dimensional linear evolution partial differential equations 
in the space-complex frequency domain, [2]-[7], [10], [14], and in the space-time 
domain, [13]. Similarly, the inverse problems with time-dependent coefficients of a 
one-dimensional linear diffusion equation can be solved by using the GPST with 
equal efficacy [11]. The convergence of a special form of GPST for solving inverse 
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problems of one-dimensional evolutional partial differential equations in the space- 
complex frequency domain has been proved under several assumptions in [15]. 

In Section 2 a special form of GPST for solving one-dimensional diffusion equa- 
tions in the space-time domain is introduced. This is followed by a section on 
the mathematical properties of the nonlinear inverse operator A from C[O, 1] to 
C[O, T]. Finally, in Section 4 the convergence proof and error estimates are given. 
They show that if the initial guess ko(x) is close enough to the regularized solu- 
tion k, (x), then under the assumptions that a Tikhonov regularized solution exists 
and the derivative operator of the regularized forward problem at the regularized 
solution is invertible, the iterative sequence {k (x)}, n = 0,1, 2, 3, .. ., of this spe- 
cial form of GPST converges to kc,(x) and IlkH-ckn < Const<On, 0 < ' < 1. 
The proof of the invertibility of the derivative operator of the regularized forward 
problem at the regularized solution will be presented elsewhere. It is clear that the 
generalization of this proof to cases of the corresponding inverse problems of higher 
spatial dimensions is rather straightforward but very tedious. 

2. Generalized Pulse-Spectrum Technique (GPST). Consider the initial- 
boundary value problem of the one-dimensional linear diffusion equation 

a(k(x)au/ax)/ax - au/at = 0, (X t) E Q = x E(0,1), t E (O T)}, 

(2.1) u(x, 0) = O. 0 < x < 1, 

au(01 t)/&x = f (t) 0 < t < T. 

u(1 Xt) = O 0 < t < TT 

and the auxiliary condition, 

(2.2) u(0, t) = g(t), 0 < t < T. 

where k(x) E Z = {k(x)Ik(x) E C[0, 1], k- < k(x) < k+ on [0, 1]} with constants 
k Ik+ > 0 and k- < 1, f(t) E H1(0, T), f(0) = 0 and g(t) E C[O0 T], g(0) = 0, a 
function obtained from measurements. 

The inverse problem here is to determine k(x) such that u(x, t) satisfies (2.1) 
and (2.2). Mathematically, let there exist a nonlinear operator Al mapping k(x) 
u(x, t) and a trace operator A2 mapping u(x, t) -- g(t) on the proper part of the 
boundary. Hence the inverse problem amounts to solving the nonlinear operator 
equation, 

(2.3) A k(x) A2 Al . k(x) = g(t). 

Mathematically, linearizing (2.3) by a Newton-like iteration method first, and then 
solving each iterate by the Tikhonov regularization method, is similar to first apply- 
ing the Tikhonov regularization method to (2.3) and then solving its corresponding 
Euler equation by a Newton-like iteration method. In actual computation, the first 
approach is more straightforward, but for theoretical analysis the second approach 
seems to be more convenient. 

Based upon the second approach, the Tikhonov regularization method for solving 
(2.3) is to minimize the functional 

(2.4) Joe(k) _ IIA . k - g12L2(OT) + X2 (B k, k) L2 [o,1], 

where k(x) E Z, B is a selfadjoint strictly positive bounded linear operator from 
C[0, 1] into its dual Vo (the set of all regular functions of bounded variation on 
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x E [0, 1] vanishing at x = 0), and a2 is the regularization parameter. The Euler 
equation of (2.4) is 

(2.5) X(k)-A'*(k) (A k-g) J a2B k = O. 

where A'(k) is the Frechet derivative of A at k and A`*(k) is the adjoint of A'(k). 
For the special form of GPST here, the following Newton-like iteration method, 

(2.6) k, +1 kn - n n 1[A'*(kn .(A kn _9) + 2 B krt] n = O. 1, 2,3, ....1 

with n= A/* (kn) . A' (kn) + A`* (ko) . (A. ko - g) + ao2B is used to solve the Euler 
equation (2.5). 

3. Mathematical Properties of the Operator A. First, a basic lemma 
containing inequalities for integrals of the solution and its derivatives of an initial- 
boundary value problem of a parabolic equation is proved. Next, the existence of a 
unique continuous solution of (2.1) for any k(x) E E and f(t) E H1 (0, T), f(0) = 0, 
is also proved, i.e., the operator A is well defined. Finally, the Frechet derivatives of 
A of arbitrary order are obtained as the solutions of various initial-boundary value 
problems of parabolic equations. 

Consider the set of functions EI)0 = E n c0o [, 1], which is a dense subset of E in 
the C[O, 1]-norm, and the set C0* [0, T] = { f (t) If (t) E C00 [O, TJ, f (O) = f (l) (0) = 

01 I = 1,2,... }, which is a dense subset of Hl*(0, T) = {f(t) I f(t) E H? (0,T), 
f (0) = 0} in the H' (0, T)-norm. 

LEMMA 1. Let 

(i) a(x) e IEO, ai(x) E C?0[0, 1], i = 1,2,.. ., m, 
(ii) b(t) E COO* [0, T], and 

(iii) bi(xit) E C0?(Q), Obi(x,O) -O0, aVi(0,t)/ax = ci(t) E C00*[oT], i = 
1,... , m. 

Then there exists a unique C0?(Q) solution O(x, t) of the following inritial-bound- 
ary value problem: 

af/t - 9(a(x)a0/ax)/ax = 0 (Eai(x)h1oi/dx) /lax, (xt) E Q. 

(3.1) 0(x,0) =0, 0<x<1, 

00(0, t)/Ox = b(t) 0 < t <T. 

0(1, t) = O<t<T. 

Moreover, O(x, t) satisfies 

(3.2) 1jj0/0XIj2,Q, < Mo, 

(3.3) 1O0/Otl2,, and JO 20/taxII2,Qr ? Ml, 

(3.4) 109/aXf2,, and IOIfIC(Q) ? (2MoMi)1/2 

for any r E [0, T], where 

jailo = Max lai(x)I, 
xE[O,111 

1012 2= f 2(X,r)dx, 11011JQ2 = ff 02 (X,t)dx dt, 2 
n 

= 
.,Q 

- 
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Mo= k' {k+llblHL2(0,T) + E laio(IcilL2(0,T) + Hla/i/&XHI2,Q)}, 

and 

Mj~k1 k~lb'IL2(0T) SE ailo(Ilc'I.HL22(oT) 
kI'=k { k+H||b'|| L2 (0oT) ? m lIO(IIi IL2(0,T) + ?12,Q) 

i=l 

Proof. The proof of the existence of a C? (Q) solution of (3.1) can be found in 
[8]. To prove (3.2), multiply the first equation of (3.1) by 0(x, t) and integrate by 
parts on Q, = Q n [o, r] for r E [0, T], to obtain 

211912r + |Ila 112a49/XI I2 2i~, +2a20&H,Q, 

= - j| [a(O)b(t) ? 5 a(O)cj(t) 0(0, t) dt 
O ~~~~i=l 

-| f fEai(x)?0ki/&x &0/&xdxdt 
i=1 

= | j| [a(O)b(t)I ? ai(O)ci(t)- Sai(x)90&il/&x] (01/9xdxdt 

< 21 Ila/2ao/lxI 12 Q 

+-| | a-'(x) [a(O)b(t)+?5ai(O)ci(t)- ai(x)aoil0x dx dt. 

Consequently, 

1012Or + Ila"/2a0/axI2,Qr 

<k_ {k+|lblHL2(0,T) + E ailo(lCiIL2(OT) + | l ki/lXI2Qr,)Q } 

Inequality (3.2) now follows. 
Let a(x, t) = &0(x, t)/&t. This satisfies the initial-boundary value problem, 

dala~t- &9(a(x)&9ua/&x)1/&x = ( E ai (x)&2ki/&tx) /ax, (x,t) ?Q1 

(3.5) i= 

a(x, O) = & (a(x)a&0/x + E aj(x)&a/0/&x) laxIt=o O, O < x < 1 
i=l 

&a(0, t)/lx = b'(t) 0 < t <T. and 
a(1, t) = O O<t<T. 

Upon comparing (3.1) with (3.5) one concludes that a(x, t) satisfies the estimation 

IU122 + I la 112aal#X I 12 Q 2~, ?2a/&a& ,Q, 

< kI' {k+||b'IIL2(o0T) + E lailo(c'IIL2(OT) + Ia2k1i/ataXI12,Q,)} 

= k M. 

Hence (3.3) is true. Finally, multiplying the first equation of (3.1) by &0(x, t)/&t, 
integrating by parts on QT, and following a similar procedure, one obtains (3.4). El 
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LEMMA 2. For any k(x) E E Y and f(t) E C* [0, T] there exists a unique 
C?'(Q) solution u(x,t) of (2.1) which satisfies 

(3.6) IanU/aX 12,QT < k+k_111f ||IL2(O,T), 

(3.7) 0U/0atI2,r and I0a2u/ataxlX 2,Q, < k~k-I IfI IL2(OT), 

(3.8) laU/laXl2, and IIUIIC(Q) < 2112k~k-I1lfitH1(oT) 

for anyr E [0,T]. Moreover, for any k*(x), k(x) E YO and f*(t), f(t) E C?*[O,T], 
denote by u*(x, t) and u(x, t) the solutions of (2.1) corresponding to {k*, f*} and 
{k, f}, respectively; then their difference u* (x, t) - u(x, t) satisfies 

(3.9) IJa(u*-U)/aXII2,Qr _< k + jj f1*|*11L2(OT)Ik*-k?o+k+k- lIf-fftIL2(oT), 

I9(u* - u)/atl2,,, and 1k192(u* - u) /ataxll2,Q, 
(3.10) k. + k+ 1 L * --1 fI 

< I2lf IIr2(OU)Ik -kIA~kokI lf -f IIr2AOT\ 

Ia(U* - U)/0X12,,. and IIu* - uIIc(Q) 

(3.11) K 21/ [k ? k 
f 

I |f*IIH1(o,T)Ik -klo + k+klI If -f |IIH (OT)] 

for any r E [0, T]. 

Proof. This lemma can be proved by using Lemma 1 for the direct problem 
(2.1) and the initial-boundary value problem satisfied by the difference u* (x, t) - 

u(x, t). El 

LEMMA 3. For any k(x) e E? h2(x) E C?[0,1], i = 1,2,3,... f(t) E 

C*[O, T], and any positive integer 1, there exists a unique C"O(Q) solution 
Wl,2 ,..., (X, t) of the initial-boundary value problem, 

9W ,2,...,1/09t - a(k(x)awj,2,...,1/ax)/0x 

(3. 1 2) = a (z h(X)a0W1,2, 1X/ax) /0X, (X, t) E Q, 

wl,2,...,1(x,0)=0, 0<x< 1 

W 1,2,...,(0,t)/ax = 0, W1,2,...1,(1,t) =0 0 < t < T. 

where Wl,2. Wl,2.i-,i+1.., w.(0,t) = u(O,t) and awt(O,t)/ax = f(t). 
Wl,2,...,l(X t) satisfies 

(3.13) la'W1,2,.l/aX I2,Ql l<l(f + k+) l1lL2(0,T)lhjolh20o... Ihilo, 

lawi 2,...,1/at12,, and | a2W,12,.h/at0xtl2,Q, 

(3.14) < I (k- -+ +)k 1f'11L2(oT)lhloljh210 ... Ihil0, 
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I(Wl,2,./DX I2,r and I W12 1 ,...,lC(Q) 
(3.15) < 21/2l!(k- + k+) 

< 
11~~~IfIIJH1(o,T)I1hIjolh210Io.jhijo, 

for any r E [O,T] and 1 = 1,2,3,.... Moreover, for any k*(x) and k(x) E Z, 
hV(x) and hi(x) E C??[0,l], i = 1,2,..., f*(t) and f(t) e C?**[O,T], and any 
positive integer 1, denote by wl*2.1(x, t) and w1,2,...,l (x, t) the solutions of (3.12) 
corresponding to {k*, h*, h*, .I. , h*, f*} and {k, h1, h2, ... , hi, f }, respectively; then 
their difference wt*2.1(x, t)- ..(X, t) satisfies 

(3.16) (1 l)(.?k)H . . ,1 H I ( 

IO(9w1*1.. 1- W1,v.t11aj2,7Qn 12(ri/DI2Q 

< (I + 1)!(k_ + k+)FHH H 

(3.16) 

JOt.- * )/L2,, ak n Lh*.-hilo - ' f*fI( L2(0,T) 
* llk -klI?+ 1 + Hi FO)| 

Ia(W1* 1-W,.-.,1)1atj2,, and ||a2(W1*'...'j - TV1) a t (9 tX I2, Q, 

< (I + 1)!(k k + k+) F (FoH2 + H H 
(3.17) k_ 

f[k* - klo + k. (f Ih* -hhilo If* PI- fL2(0,T) 

I(1*,... ,1-1,.,)X Tan |W |1* ... 11- W1 ...1i I IC(Q) 
(3.18) ~~< 21/2(1 + 1)!(k- + k+) (Fo + Fj)Hj Hi 

t * ~~k_ 
1 

jhi*- hilo + lf* - f IH1(0T)8 
I + 1+= Hi FO?F1 )| 

for any r E [0, T] and I = 1, 2, 3, ... Here the positive constants Fo, F1, H1, H2, ... 
are chosen such that 

Max{If If*L2(oT), IIf lIL2(0,t)} <F0, 
(3.19) Max{I|f I IL2(OT), If IIL2(0,T)} < F1, 

Max{h* lo, Ihijo} < Hi, *i = 1, 2,3. .... 
Proof. Applying Lemma 1 and Lemma 2 to (3.12) and to the initial-boundary 

value problem for w*2. (x, t)-w1,2.. (X, t), and using induction on 1, the desired 
inequalities follow after some tedious manipulation. Ol 

Remark. For the special case of hi*(x) = hi(x), i = 1,2,3,..., and f*(t) = f(t), 
Eqs. (3.16), (3.17) and (3.18) become, respectively, 

| II(w. I Wl,...,1)/0XII2,Q, 

(3.20) < ( 1)!(k?+ k+) I1f hLI2(hT)Ihi .. 1h, o1k* - klo, k1.2 

|0(w* - 1,..,)/Otj2,r and IIO2(wl*...l- W1,. .,1)/0taX II2,Qr 

(3.21) (I+ 1)!(k- +?k+)1 If/L2(oT)h ljIoh2Io ...I 
jhLo1k* -klo, 
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Ia(W*,.. .,j-w W,... ,)/ax92,, 
and I Iw.* i 1 . IC(Q) 

(3.22) < 212(1l+ 1)!(k- ? k+) I I f I I h h h k k I 

LEMMA 4. For any k*(x), k(x) E Z0c, hi(x) ? C?[O,1], i = 1,2,..., and 
f (t) E COO* [O. T], the differences 

Pi(X,t) = u*(x,t)-u(x,t)-wi (x,t) and 

(3.23) P 1 ,2, ..,1 (XI t) = w ,.... ,- (x, t)- ... . ,- 1 (x, t) -w 1,......, (x, t), 

I = 2,3, ... . 

satisfy 

(3.24) PicQ 2/2( k_ ? k I) If I IH1 (oT) Ik*-k 0 

and 

21/2(l ? 1)!(k-. ? k+) 2fH(T~h~ 
(3.25) IP'.H ,11C(Q) 

< 
k?+2 IIfIIH (0,T)Ih 1. Jh1_1 olk 

k 01 

I = 2,3,4,.... 

Here, wt* 2.1-1(Xt), w1,2,..,(Xt) and Wl,2,...,1 (X, t) are the solutions of (3.12) 
corresponding to {k*, hl,..., hj_, f },{k, h, .. .,. hj_,,f} and {k, hj,...,hji,,k*- 
k, f }, respectively. 

Proof. This lemma is a direct consequence of Lemma 1 and the remark after 
Lemma 3. El 

LEMMA 5. For all k(x) E Z one has 

(3.26) A k(x) C C[O, T]. 

Proof. For any fixed k(x) E Z and f(t) E H1*(O,T) one can construct their 
approximate sequences {kn(x)} c Z0O and {ff(t)} c C?* [O, T] such that 

Ikn-kjo --?, l lfn-fH|H'(O,T) O as n -o. 

Without loss of generality, let 

H|fnIIL2(0,T) < IHf HIL2(0,T) + 1 Fo and ||fnI IL2(0,T) < IHf IIL2(0,T) + 1-F1. 

Consider the family of initial-boundary value problems 

a un/at -(kn(x)&un/&x)/&x = 0, (x, t) E Q. 

Un (XI O) =1 O. < x < 1, 

aln (0i t) X = f (t), 0 < t < T, 

Un(ilt) = O. O < t < T. 

Using the results of Lemma 1 for the C?? (Q) solution of the above initial-boundary 
value problems and their differences Un(X, t) - Um(X, t), m, n = 1, 2,..., one can 
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derive the following estimates, 

Ul/jUn/aXj2,Q, < k+k-I'Hfn1lL2(0,T) < k+k-IFo, 

Juan/atI2, and 1&12Un/&taX1|2,Q, < k+k_ 1|fn | L2(OT) < k+k_1Fi, 

1u9n/&x92,, and llUnlHC(Q) < 21/2k+kI'HjfnflH1(oT) < 21/2k+k 1(Fo + F1), 

a(Un - Um)/aXjj2,Qr < (k_ + k+)kI2Folkn - kmlo + k+k-If1-fmHL2(O, 

1(Un - Um)/atj2,r & 12 (un - Um)/&taXIJ2,Qr 

< k- k+ F1lkn-kmlo k+fnfmL2(OT) 

and 

Ja(Un -Um)/&XI2,r & IUn - UmIIC(Q) 

< 21/2 { kk + (Fo + Fl)lkn - kmlo + k+ fn - 
fmjjHH(O,T) 

} 

From the above estimates it follows that there exists a function u(x, t) E C(Q) such 
that 

Un (XI t) u(x, t),I 

all (X t)/ 1XL2 (0,1) *) a(X t)1aX all (X t)/lt 
L2 (0,) *) a(j t)/at 

for any t E 1, TI, and 

192U( )tx L (Q), a2U(X, t)lataX. 

Moreover, the norms of u(x, t) and its derivatives also satisfy the above estimates. 
Let V = {v(x,t)lv(x,t) E C(Q), &v/&x E L2(Q), and v(O,t) = 0 for t E [O,T]}. 

It can be easily verified that Un(X, t) satisfies the integral identity 

f f {Ualn/at. v + knaUn/a&x &v/&ax} dx dt + f kn(O)fA(t)V(O, t) dt = 0 

for any v ? V and r E [0, T]. Therefore, u(x, t) satisfies the same integral identity 
with n -x oo. This implies that u(x, t) is a continuous solution of (2.1) in the 
weak sense. From the uniqueness properties of weak solutions of linear parabolic 
equations, u(x, t) is also a unique continuous solution of (2.1). Thus, for any k(x) E 
E and f (t) E Hl* (O, T), one has A1 k(x) = u(x, t) E C(Q) and A k(x) = u(O, t) E 
C[0, T]. l 

Remark. It is obviously true that u(O, t) = - fJ &u(x, t)/&x dx for t E [0, T]. 
The following relation then exists between the operators A1 and A: 

(3.27) A k(x) = (A1 *k(x))/&xdx for t E [O,T]. 

LEMMA 6. The operator A is Frechet differentiable up to an arbitrary order 
and the Ith-order Frechet differential 

(3.28) A(')(k) . h1h2 ... = W 1,2,...,l(0,t) E C[OT] 
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for any k E , hi E C[O, 1], i = 1, 2 ... ,II = 1,2, ..., and f(t) E H* (O T), where 
wl,2,...,l (x, t) is the continuous solution of the initial-boundary value problem (3.12) 
corresponding to {k, hi, h2, . . , hi, f}. 

Proof. Let k(x) E Z, hi(x) E C[0,1], i = 1,2,..., and f(t) E H1*(O,T) be 
given. Let the approximate sequences {kn (x) } C {hin (x) } C Cc* [O, 11, i = 

1,2,..., and {fn(t)} C C??*[O,T] satisfy the conditions in the proof of Lemma 5: 

1hin-hilo O as n oo and Ihin 10 < Ihi lo + 1 =_ Hi i, n = 1, 2 .... Then one has 
the C? (Q) sequence solution {un (x, t)} of (2.1) and the COO (Q) sequence solutions 

{Wl,2, .,ln(zX t)} of (3.12), 1 = 1, 2, 3, ... From Lemma 5, the limit function u(x, t) 
is the continuous solution of (2.1), i.e., A1 - k(x) = u(x, t) for any k(x) E X. Using 
the results of Lemma 2 for {Wl,2.,(,n (t)}, one obtains the following estimates: 

lW1..1,n/OlIX2,Q < !(k +k +)FOHHH2 ... Hi, 

. jW1,/,1,nlatj2,T and II&2Wi. .,1nlat9Xjj2,Q, 

(3.29) K l!(k_ + k+)Fl HiH2 ... HI, 

j1W1, .,i,n/aXl2,r and jjW1,...1,nIIC(Q) 
< 2 '/21!(k_ + k+) (Fo + F1)H1H2 H1. 

kl+1 

Moreover, 

J/aI(w1,. ..n - W1,2,.. .,I,m)/aXll2,Q 

(I+ 1)!(k_ + k+)FHH HI 

{IknkmG?'[ (_ hin-himlo ? IIfn-fmr| L2(0,T) 
likn - krn lo+ l - E H +Fo J 

Ja9(w1,.l.,1,n -W,.i,1,m)/9t12,, and (Wl,...,l,n - Wi.lm)/ataXII2,Q, 

(1 + 1)!(k_ + k+)FH . 

-Hi 

{ lkn-kmlO+ 1+1 ( If hin himlo + lfn- fflIL2(0,T))} 

and 

1 (9Wl,...,ln - W1, m)/a9xI2,, and j |W,...,1,n - wl...lm I IC(Q) 

< 21/2(I + 1)!(k. + k+) (F0 + F1)H1 ... H1 

{lkn - kmI ? ? 1 Ihn himl0 ?1 - frnHH2(o,T) 

for any 0,]a , + 1 Hi Fo + F ) 1 

for any r E [O. T] and m, n, I = 1, 2,... 
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From the last three estimates it follows that there exist functions Wl,2,...,l (X, t) E 
C(Q), I = 1, 2,3,.. ., such that 

Wl,2, ... ,1,n (XI t) I... W,2 .... I1 t),I 

(.1,n(xt)/a9x 9w(0 * 1,2,...,1(X,t)/19X for every t e [O,T], 

9W1,2,..,1, (X t)/lat L2(0j1) 09W1,2 ..(xt) /at for every t E [0,T], 

and 

,2..L2(1,n(X)t (O2W,2.l(X t)/ataz, 1 = 1, 2,3,... 

as n -+ oo. 

The norms of w1,2,.,(x, t) and their derivatives also satisfy the same estimates as 
those for the norms Wl,2.ln (Xi t) and their derivatives (3.29). Moreover, it is clear 
that W1, 2,. . 1 (X, t) is the weak solution of (3.12) corresponding to {k, h1,. .. , h, f }. 

Now let the operators B1 be defined as 

Bi(k) . hih2 hi = Wl,2,...,(X t) E C(Q) 

for any k E E, hi e C[O,T], i = 1,2,...,l and I = 1,2,3,.... Obviously, these 
operators are linear with respect to hi, i = 1, 2, ... ,1. 

To prove the Frechet differentiability of the operator A1 up to an arbitrary order, 
one needs to verify the following equalities, one by one: 

lA1 k* - A1 . k - Bi(k) . (k* - k)lo = O(Ik* - klo), 

JA/ (k*) . h- A (k) h - B2(k) . hi(k* - k)lo = O(k* - klo), 
............................................................................ 

IA( 1)(k*) hi hi-, - A(,-) (k) hi. hi-- B(k) hi h -l(k* -k)lo 
- O(Ik* - klo), 

*. . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

In fact, upon using the results in Lemma 4 for their approximations, one obtains 

Iun(x t) - Un(x t) -Win(Xi t)I < 21/2(k- + k+)kI3Ilf IH1(oT) Ik* -kl, 
and 

1W*1,2,...,1-1n (XI t)-Wl,2,...,l1-1,n (X t) - W,2,. I.~ n(Xi 0)| 

< 2'/2(l + 1)!(k_ + k+)kI-'2IfIIH1(oT)Ihlio .hi1.11ok* - kI0, 
1 = 2,3,. 

Hence, as n -x oc, the above equalities hold. By the definition of the Frechet 
differential, one has A(') (k) hi h2 ... h = Bi (k) . h h2 ... hi and 

A(') (k) hi h2 ... = W ,2,...,l (O. t) =- (Wl,2,...,l(Xt))/1xdx e C[O,T]. o 

4. Convergence of the Iterative Solution of a GPST. Before proving the 
main convergence theorems, we need the following lemma from [12]. 
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LEMMA 7. Let X be an operator from a Banach space X into another Banach 
space Y and X be Frechet differentiable in Q c X. Let Nn be a sequence of linear 
invertible operators from X into Y such that for given nonnegative constants A, (, 

,/ and r, 

(i) IINA-1l <? A, 
(ii) II Nn - 0'(ko) II < 

(iii) if k*, k are in the sphere S(ko, p) C Q, then 

11k(k*) - 0(k) - 0'(ko) . (k* - k)IIy < /11k* - kIIx, 

(iv) 11q(ko)lly < 7, and 
(v) f = A(fl + ) < 1, ro = A (1-f) < p. 

Then the iteration kn+1 = kn - N 1 (kn), n = 0,1,2,3,..., is well defined 
and converges to a solution k of ?(k) = 0. Furthermore, Ilk - kolix < ro, and k 
is the only solution contained in this sphere. The rate of convergence is given by 

Ilk - knllX < rosn. 

To put the special form of GPST described in Section 2 into the mathematical 
framework of Lemma 7, we let the operators +(k) and Nn be given by (2.5) and 
(2.6), respectively, and let X = C[0, 1], Y = VO = (C[0, 1])* and ? = E. By using 
the properties of the operator A proved in the previous section it can be easily 
shown that q(k) is Frechet differentiable, 

0'(k) = A'*(k) . A'(k) + A//*(k) . (A. k - g) + a2B, 

and that there exist positive constants L1, L2 and L3, depending only on k-, k+ 
and If IIH1(o,T) such that 

IIA'*(k*) - (A. k* - g) - A'*(k) (A. k - g)II < LjIk* - klo, 

IIA'*(k*) A'(k*) - A'*(k) A'(k)jj < L2jk* - klo 
and 

IIA"*(k*) . (A k* - g) - AII*(k) (A . k - g)jj < L31k* - klo 

for any k*, k E E. Hence Lemma 7 applied to the special form of GPST becomes 
the following lemma. 

LEMMA 8. Suppose that there exist positive constants A and i1 and ko E E such 
that 

(4.1) 110~(ko)ll y < r11 

(4.2) IINj-111 = 110'(ko)-1'j < A 

and 

(4.3) A2r7 < (4C)-', 

where C = 3L2 + L3, with L2 and L3 being the Lipschitz constants of A'* - A' and 
A` - (Ak - g), respectively. Then the iterative sequence {kn} of (2.6) converges to 
a solution k,(x) of 4(k) = 0. Moreover, its rate of convergence is characterized by 
the estimate 

Ilka - knIIx = rosns 

where ro = An(1 - CAp)-1 and ' = A(2L2 + L3)p(1 - L2Ap)-1. 
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Proof. To show that the hypotheses (4.1)-(4.3) are equivalent to the hypotheses 
(i)-(v) of Lemma 7, we note first that (4.1) is equivalent to (iv). Next, let p = 

(2AC)-1(1-(1-4A2nC)1/2); obviously, p satisfies p = A (1l-ApC)1. From (4.3), 
ApC < 1. Let S(ko, p) C Z; then for any kn E S(ko, p) we have 

IINn - q'(ko)|| = IINn - Noll = IIAI*(kn) . A'(kn) - A'*(ko) . A'(ko)II 
< L2I1kn-kollx < L2Pp= 

which verifies (ii) and jjIN71(Nn - No)JJ < L2Ap < CAp < 1 from (4.2). From [9], 
the operator Nn is invertible and IIN,-1'I < A(1 -L2Ap)-l = A*, which implies (i). 

For any k E S(ko, p), one also has 

I Ib'(k) - b'(ko)j I < IIA'* (kn) A'(kn) - A/* (ko) A'(ko) I I 
+ IIA`*(kn) . (A kn- g)- AI-* (ko) (A. ko- 9) 

< (L2 + L3)p; 

thus, for any k*, k e S(ko, p), one obtains 

11k(k*) - q(k) - 0'(ko)(k* -k)lly 

= |||0' (k + t(k* -k)) -+ (ko)} dt (k* -k) | 

< (L2 + L3)llk* -kIx =flI1k* -klx, 

which is equivalent to (iii). Finally, let 

f = A%(f + () = A(2L2 + L3)p(1 - L2Ap)-1. 

Then it is clear that f < 1 and ro = A*r,(1 - ~) < Ar(1 - CAp)-1 = p, which implies 
(v). Hence, from Lemma 7, the conclusion of Lemma 8 is proved. O 

Now the main result is contained in the following theorem. 

THEOREM. Assume that there exists a regularized solution ka (x) e Z for a > 0 
small enough such that 4(k,) = 0 and 0Y(k,) is invertible. Then there exists at 
least one sequence {fkn} from (2.6) that converges to k,(x). Moreover, the following 
error estimate holds, IlIk - knIlx < ro~n, where ro and ' < 1 are two positive 
constants depending only on a, IIBII, L1, L2, L3 and //q5'(kx)1/j. 

Proof. To show that there exists a ko e Z such that the hypotheses (4.1)-(4.3) of 
Lemma 8 are satisfied, let IkI'(kQ)-1II = 1A, A > 0, and 6 = Min{A'(L2 +L3)-1, 
'A-2C-1(L1 +a2IIBII)-1}. For any ko E S(k<,8) nZ, one has 

10(ko)I y = I1q(ko) - 0(ki)j|y 

< IIAI*(ko) . (A. ko - g) - A1*(kj). (A. k - g)II + a2IJIB. ko - B kaII 
< (Li + al2IJBII)llko - ka>lx < (Li + a 2 JIBII)6 = ?71 

i.e., (4.1) is satisfied. Since 

Ikb'(ko) - 0'(ka)ll < IIAI*(ko) . A'(ko) - A`*(ka) - A'(ka)II 
+ IIA+ (ko) L) (A - ko-g) - AL*(k+ ) L) (A ka g) 

< (L2 + L3)llko - kcelx < (L2 + L3)6 < A-' 
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and 1A,'(k)1ll = AX one can show that q(ko) is invertible and Ikk'(ko)-111 < 
A, i.e., (4.2) is satisfied. Next, from (4.1) and (4.2) it follows that A2 = 

A2(L1 + a 21jBjJ)& < !C-1, i.e., (4.3) is satisfied. Finally, Lemma 8 yields the 
results of the theorem. El 
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